
COMPUTER MULTITASKING

n computing, multitasking is a method where multiple tasks, also known as processes, are performed during
the same period of time. The tasks share common processing resources, such as

a CPU

and main memory RAM and ROM

In the case of a computer with a single CPU, only one task is said to be running at any point in time, meaning
that the CPU is actively executing instructions for that task. Multitasking solves the problem
by scheduling which task may be the one running at any given time, and when another waiting task gets a turn.
The act of reassigning a CPU from one task to another one is called a context switch. When context switches
occur frequently enough the illusion of parallelism is achieved.

Even on computers with more than one CPU (called multiprocessor machines), multitasking allows
many more tasks to be run than there are CPUs.

Operating systems may adopt one of many different scheduling strategies, which generally fall into the following
categories:

•In multiprogramming systems, the running task keeps running until it performs an operation that requires
waiting for an external event (e.g. reading from a tape) or until the computer's scheduler forcibly swaps the
running task out of the CPU. Multiprogramming systems are designed to maximize CPU usage.

•In time-sharing systems, the running task is required to relinquish the CPU, either voluntarily or by an external
event such as a hardware interrupt. Time sharing systems are designed to allow several programs to execute
apparently simultaneously. The expression 'time sharing' was usually used to designate computers shared by
interactive users at terminals, such as IBM's TSO, and VM/CMS

•In real-time systems, some waiting tasks are guaranteed to be given the CPU when an external event occurs.
Real time systems are designed to control mechanical devices such as industrial robots, which require timely
processing.

Multithreading
As multitasking greatly improved the throughput of computers, programmers started to implement applications
as sets of cooperating processes (e. g., one process gathering input data, one process processing input data,
one process writing out results on disk). This, however, required some tools to allow processes to efficiently
exchange data.

Threads were born from the idea that the most efficient way for cooperating processes to exchange data would
be to share their entire memory space. Thus, threads are basically processes that run in the same memory
context. Switching between threads does not involve changing the memory context.

While threads are scheduled preemptively, some operating systems provide a variant to threads, named fibers,
that are scheduled cooperatively. On operating systems that do not provide fibers, an application may
implement its own fibers using repeated calls to worker functions. Fibers are even more lightweight than
threads, and somewhat easier to program with, although they tend to lose some or all of the benefits of threads
on machines with multiple processors.

http://en.wikipedia.org/wiki/Computer_process
http://en.wikipedia.org/wiki/Multiprocessing
http://en.wikipedia.org/wiki/Fiber_(computer_science)
http://en.wikipedia.org/wiki/Thread_(computer_science)
http://en.wikipedia.org/wiki/CP/CMS
http://en.wikipedia.org/wiki/Real-time_computing
http://en.wikipedia.org/wiki/Time_Sharing_Option
http://en.wikipedia.org/wiki/Hardware_interrupt
http://en.wikipedia.org/wiki/Time-sharing
http://en.wikipedia.org/wiki/Multiprogramming
http://en.wikipedia.org/wiki/Scheduling_(computing)
http://en.wikipedia.org/wiki/Multiprocessor
http://en.wikipedia.org/wiki/Parallel_computing
http://en.wikipedia.org/wiki/Context_switch
http://en.wikipedia.org/wiki/Scheduling_(computing)
http://en.wikipedia.org/wiki/Central_processing_unit

	Multithreading

